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Abstract: Stroke is an emergency in which delays in treatment can lead to significant loss of neuro-
logical function and be fatal. Technologies that increase the speed and accuracy of stroke diagnosis or
assist in post-stroke rehabilitation can improve patient outcomes. No resource exists that comprehen-
sively assesses artificial intelligence/machine learning (AI/ML)-enabled technologies indicated for
the management of ischemic and hemorrhagic stroke. We queried a United States Food and Drug
Administration (FDA) database, along with PubMed and private company websites, to identify the
recent literature assessing the clinical performance of FDA-approved AI/ML-enabled technologies.
The FDA has approved 22 AI/ML-enabled technologies that triage brain imaging for more immediate
diagnosis or promote post-stroke neurological/functional recovery. Technologies that assist with
diagnosis predominantly use convolutional neural networks to identify abnormal brain images
(e.g., CT perfusion). These technologies perform comparably to neuroradiologists, improve clinical
workflows (e.g., time from scan acquisition to reading), and improve patient outcomes (e.g., days
spent in the neurological ICU). Two devices are indicated for post-stroke rehabilitation by leveraging
neuromodulation techniques. Multiple FDA-approved technologies exist that can help clinicians
better diagnose and manage stroke. This review summarizes the most up-to-date literature regarding
the functionality, performance, and utility of these technologies so clinicians can make informed
decisions when using them in practice.

Keywords: machine learning; artificial intelligence; stroke; intracerebral hemorrhage; FDA

1. Introduction

Stroke is a neurological emergency and the fifth leading cause of death in the United
States [1–3]. Established clinical interventions exist for many stroke subtypes, such as large
vessel occlusion (LVO) and intracranial hemorrhage (ICH). Prompt treatment is one of the
more important factors in maximizing the preservation of neurological function. Notably,
each minute of treatment delay results in significant neuronal death and the loss of 4.2 days
of healthy life [4].

Tools to improve the speed and accuracy of stroke diagnosis and treatment could
improve patient outcomes. Artificial intelligence/machine learning (AI/ML) will play
a large role in developing such tools. AI/ML in healthcare is growing at 40% per year,
and its adoption has the potential to cut USD 150 billion in healthcare costs by 2026 [5].
Recognizing the potential AI/ML has to improve healthcare, the United States Food and
Drug Administration (FDA) has developed new protocols to assess the safety and effi-
cacy of AI/ML-enabled health technologies [6]. AI/ML-enabled algorithms have been
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leveraged for various clinical applications such as detecting liver fibrosis [7], analyzing
EKGs [8], monitoring Parkinson’s [9], diagnosing glaucoma [10], and classifying lung
cancer [11]. The FDA has approved 22 AI/ML-enabled technologies for indications specifi-
cally related to stroke diagnosis and rehabilitation. Existing literature reviews in this area
have broadly evaluated AI/ML algorithms that have largely been developed for research
purposes [12–16]. No study to date has comprehensively evaluated the real-world clinical
performance of clinically available, FDA-approved devices indicated for the diagnosis and
management of stroke. This review aims to synthesize the most relevant, up-to-date infor-
mation related to these technologies and provide an overview of their unique functionalities
and performances regarding improving clinical workflows and outcomes.

2. Methods
2.1. Technology Search

We sought to identify all FDA-approved, AI/ML-enabled medical technologies with in-
dications for ischemic stroke and/or ICH. To compile this list, our search had
two components.

First, we examined the previously cited [17] database that is directly maintained by
the FDA and contains 343 AI/ML-enabled technologies that the FDA has approved. We
extracted technologies labeled “radiology” and “neurology” (n = 253). As previously
described in the literature, this list does not have search or filter functionality to assess
technology descriptions or approval letters [18]. Therefore, two reviewers analyzed the
253 official FDA approval letters and/or company websites to determine their relevance to
ischemic stroke/ICH. This search resulted in 30 technologies, 9 of which were listed for
multiple indications, resulting in 21 unique technologies (Figure 1).
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Figure 1. Literature and web search methodologies. A Google search was conducted using a
compound search with terms related to stroke, artificial intelligence/machine learning, and FDA
approval. Seventy links were evaluated based on stopping criteria, which resulted in the discovery
of 7 unique technologies. A total of 343 technologies were evaluated from an FDA database, which
resulted in the discovery of 21 unique technologies. The final list of 22 technologies was created after
excluding six overlaps from the two searches. CVA: Cerebrovascular Accident.
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Second, we conducted an internet search in accordance with previously described
methods [19] to identify technologies with approval statuses not covered in the FDA list.
In short, we conducted a Google search with the compound search term: (“stroke” OR
“intracerebral hemorrhage” OR “CVA”) AND (“artificial intelligence” OR ”ai” OR ”machine
learning” OR ”ml” OR ”deep learning”) AND (“FDA approved” OR “FDA approves” OR
“FDA approval”) (Figure 1). The search returned 82,600 results, and URLs were sequentially
assessed for information regarding AI/ML-enabled, FDA-approved technologies. As per
previously described stopping criteria [19], we concluded the search after 40 new results
(i.e., 4 full pages of Google results) failed to reveal new technologies. We evaluated 70 links;
18 links included relevant technologies, 7 of which were unique (Figure 1).

Combining the results from both search components, we assessed 28 ischemic stroke-
/ICH-related technologies. After excluding 6 duplicates, we arrived at a total of 22 unique
technologies (Figure 1).

2.2. Literature Search

We queried PubMed and relevant company websites to assess the most up-to-date
(post-2018), technology-related literature published in peer-reviewed journals. The PubMed
search was conducted by querying the database with the device name (e.g., “Rapid AI”),
and company websites were searched for “research” or “data” pages that cited studies
involving the company’s technology. Studies published before 2018 were excluded, and we
did not include review articles, editorials, or letters to the editor. Original, primary research
that directly assessed the clinical performance of an AI-enabled technology for stroke
diagnosis or management in humans was included. For each publication, we collected data
regarding metrics commonly used to assess ML algorithm performance, such as accuracy,
specificity, sensitivity, positive predictive value, negative predictive value, and area under
the receiver-operator curve (AUC). We report results from 45 publications. This study was
IRB-exempt.

3. Review of Literature

Our search revealed 22 FDA-approved, AI/ML-enabled technologies indicated for
stroke diagnosis and management. A total of 18 companies developed these 22 technologies,
with a majority (11/18; 61%) headquartered outside of the United States. The first approval
was in February 2018. All initial approvals were for technologies that assist with ischemic
stroke diagnosis, but two out of the last three approvals (BrainQ and IpsiHand) were for
devices indicated for post-stroke rehabilitation (Table 1). Here, we synthesize the most
recent literature on the clinical performance of these technologies.
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Table 1. List of 22 unique AI/ML-enabled, FDA-approved technologies indicated for diagnosis
and/or management of stroke. Twenty technologies are indicated for stroke diagnosis and two for
post-stroke rehabilitation, with approval dates ranging from February 2018 to April 2021. Eighteen
companies developed these technologies, with 11/18 (61%) headquartered outside the United States.
Generally, the technologies indicated for stroke diagnosis utilize convolutional neural networks as
their underlying algorithm. CTA: Computed Tomography Angiography; CTP: Computed Tomogra-
phy Perfusion; ICH: Intracranial Hemorrhage; LVO: Large Vessel Occlusion. * RAPID is indicated
for both LVO and CTP analysis. ** CINA is indicated for both LVO and ICH analyses. 510(k) refers
to a premarket submission made to the FDA demonstrating the proposed device to be as safe and
effective as a legally marketed device. 513(f)(2) (De Novo) classification describes devices that are
considered for Class I (low-to-moderate risk) or II (moderate-to-high risk) categorization, either
after receiving a “not substantially equivalent” determination post-510(k) submission or in cases
where there is no legally marketed device to determine substantial equivalence. A breakthrough
status designation aims to expedite the development, assessment, and review of a medical device to
provide patients with timely access to such a device while maintaining FDA statutory standards in
the approval process.

Device Company
Name Headquarters

FDA
Approval
Number

Type of
Approval Indication Date of

Approval

ContaCT
(Viz LVO) Viz.ai

San
Francisco,
CA, USA

DEN170073 513(f)(2)
(De Novo)

Analyze acute CTA to
identify LVO February 2018

Viz CTP Viz.ai
San

Francisco,
CA, USA

K180161 510(k)
Analyze brain tissue
perfusion parameters

on CTP
April 2018

BriefCase Aidoc
Medical Israel K180647 510(k) ICH detection in

non-contrast CT August 2018

Accipiolx MaxQ Al Israel K182177 510(k) ICH detection in
non-contrast CT October 2018

Vitrea CT
Brain

Perfusion
Vital Images Minnetonka,

MN, USA K181247 510(k)

Visualize apparent blood
perfusion in brain tissue
affected by acute stroke

on CT

November 2018

RAPID * iSchemaView Golden, CO,
USA K182130 510(k)

Identification of CTP, CTA,
and MRI images consistent

with stroke
December 2018

HealthICH

Zebra
Medical

Vision (now
Nanox AI)

Israel K190424 510(k)
Aid clinical assessment of
non-contrast head CT with
features suggestive of ICH

June 2019

DeepCT Deep01
Limited Taiwan K182875 510(k) ICH detection in

non-contrast CT July 2019

Icobrain-CTP Icometrix Belgium K192962 510(k) Image analysis of brain CT
perfusion scans February 2020

Rapid ICH iSchemaView Golden, CO,
USA K193087 510(k) ICH detection in

non-contrast CT March 2020

CuraRad-ICH CuraCloud Seattle, WA,
USA K192167 510(k) ICH detection in

non-contrast CT April 2020

NinesAI Nines Palo Alto,
VA, USA K193351 510(k) ICH detection in

non-contrast CT April 2020

CINA ** AVICENNA.AI France K200855 510(k) ICH in head CT and LVO
in head CT angiography June 2020
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Table 1. Cont.

Device Company
Name Headquarters

FDA
Approval
Number

Type of
Approval Indication Date of

Approval

Rapid
ASPECTS iSchemaView Golden, CO,

USA K200760 510(k)
ASPECT scoring in

patients with known MCA
or ICA occlusions

June 2020

QER Qure.Ai
Technologies India K200921 510(k) ICH detection in

non-contrast CT June 2020

Augmented
Vascular
Analysis

See-Mode
Technologies Singapore K201369 510(k) Predict stroke risk from

vascular ultrasound September 2020

HALO NICo-Lab
B.V. Amsterdam K200873 510(k)

LVO identification in
anterior circulation (ICA,

M1 or M2) from
CT angiogram

November 2020

FastStroke,
CT Perfusion

4D

GE Medical
Systems SCS France K193289 510(k)

CT Perfusion 4D:
Perfusion abnormalities

from contrast
CTFastStroke: Stroke

detection from CT (e.g.,
non-constast, angiogram)

November 2020

Neuro.Al
Algorithm TeraRecon Durham,

NC, USA K200750 510(k) Detect changes in brain
perfusion from CT or MRI November 2020

BrainQ BrainQ Israel - Breakthrough
status

Reduce disability
post-stroke February 2021

Viz ICH Viz.ai
San

Francisco,
CA, USA

K210209 510(k)

Analyze acute
non-contrast CT of brain,

notify specialist of
suspected ICH

March 2021

IpsiHand
Upper

Extremity Re-
habilitation

System

Neurolutions Santa Cruz,
CA, USA - Breakthrough

status Post-stroke rehabilitation April 2021

4. Large Vessel Occlusion (LVO) Identification in Acute Ischemic Stroke

An important application of AI/ML is the automated detection of large vessel oc-
clusions. Viz ContaCT, commercially known as Viz LVO, was the first FDA-approved
AI/ML-enabled technology indicated for stroke and uses a convolutional neural network
(CNN) as the underlying algorithm to detect LVOs from CT angiography (CTA). In data
submitted to the FDA, Viz LVO displayed an area under the receiver operating curve (AUC)
of 0.91 and reduced time from scan reading to specialist notification from 58 to 7 min [20],
indicating improvement of clinical workflow efficiency. Others found similar increases in
efficiency when using Viz LVO, reporting decreased transfer and stroke team notification
times [21,22], as well as lengths of stay in the neurological ICU [22] (Table 2). Assessment
of Viz LVO’s performance has shown negative predictive values (NPV) ranging from
79 to 99% and sensitivities between 81 and 88%, with relatively fast run times (~3 min) and
consistent performance across different vascular structures [23,24] (Figure 2A). Notably, Viz
LVO is an application within the broader Viz.ai platform, which includes tissue perfusion
analysis on CTP and ICH identification on CT of the head.
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Table 2. Five technologies are indicated to diagnose LVO and calculate the Alberta Stroke Program Early CT Score (ASPECTS). The majority of studies assessing
these technologies were retrospective. Algorithm performance either met or exceeded human performance, and implementation of the solutions has improved
clinical workflows and patient outcomes. Difficulties with LVO identification were occasionally seen with vessel anatomical variation. Human performance generally
continues to be the gold standard for evaluating these algorithms. ICA: Internal Carotid Artery; MCA: Middle Cerebral Artery. * Indicates metric was extrapolated
from available data.

Device Author, Year Level of
Evidence

Dataset
Characteristics

Sample Size
(Scans) AUC PPV NPV Accuracy Sensitivity Specificity Other Metrics/Comments

Viz LVO

Hassan et al.,
2020 [22] Prospective Proprietary,

Single Center 43 - - - - - -

Viz LVO reduced median CTA
time at primary center to door-in

at comprehensive center by an
average of 22.5 min. Neuro-ICU
stays were reduced by 2.5 days.

Yahav-Dovrat
et al., 2021 [23] Prospective Proprietary,

Single Center 1167 - 65% 99% 94% 81% 96% -

Morey et al.,
2021 [21] Retrospective Proprietary,

Single Center 55 - - - - - -

Viz LVO reduced median
door-to-neurovascular team

notification time
from 40 to 25 min.

Rodrigues
et al., 2021 [24] Retrospective Proprietary,

Single Center 610 0.88 93% 79% 88% 88% 89%

Algorithm had similar
performance across ICA-T,
MCA-M1, and MCA-M2

occlusions. Mean run
time was ~3 min.

RAPID
(LVO)

Adhya et al.,
2021 [25] Retrospective Proprietary,

Multicenter 310 - 23–75% - - 80% -
CT to groin puncture time was
lower after implementation of

RAPID (93 min vs. 68 min).

Amukotuwa
et al., 2019 [26] Retrospective Proprietary,

Single Center 477 0.77–0.86 14–58% 97–99% - 86–94% 68–81% Median scan analysis time was
roughly 160 s.
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Table 2. Cont.

Device Author, Year Level of
Evidence

Dataset
Characteristics

Sample Size
(Scans) AUC PPV NPV Accuracy Sensitivity Specificity Other Metrics/Comments

CINA

McLouth et al.,
2021 [27] Retrospective Proprietary,

Multicenter 378 - 86–98% 98–99% 98% 98% 98%

In the detection of LVO subtypes
(i.e., at distal internal carotid

artery, middle cerebral artery M1
segment, proximal middle

cerebral artery M2 segment,
distal middle cerebral artery M2
segment), the CINA algorithm

demonstrated an accuracy of 97%,
sensitivity of 94.3%, and

specificity of 97.4%.

Rava et al.,
2021 [28] Retrospective Proprietary,

Single Center 303 - 99% 64% 81% 73% 98%
Scan processing time was ~70 s.

The algorithm identified ICA, M1
MCA, and M2 MCA occlusions.

HALO Luijten et al.,
2021 [29] Prospective

MR CLEAN
registry &

PRESTO study,
Multicenter

1756 0.75 47% 91% 76% * 72-89% 78% Performance varied considerably
based on location of occlusion.

Rapid
ASPECTS

Lasocha et al.,
2020 [30] Retrospective Proprietary,

Single Center 100 - - - - - -

Exact ASPECT score agreement
between RAPID and manual

methods was poor, but crossing
of threshold for reperfusion

therapy was characterized by an
80% match.

Hoelter et al.,
2020 [31] Retrospective Proprietary,

Single Center 131 0.73 - - - - -
Correlation between ASPECT

scores of experts and RAPID was
high (r = 0.78)
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Table 2. Cont.

Device Author, Year Level of
Evidence

Dataset
Characteristics

Sample Size
(Scans) AUC PPV NPV Accuracy Sensitivity Specificity Other Metrics/Comments

Maegerlein
et al., 2019 [32] Retrospective Proprietary,

Single Center 100 - - - - - -

In acute stroke of the middle
cerebral artery, RAPID-calculated

ASPECT score had better
agreement with predefined

consensus scores than
neuroradiologists overall

(κ = 0.9 vs. κ = 0.57, respectively),
and particularly in the time
interval of 1 to 4 h between

symptom onset and imaging.

Al-Kawaz
et al., 2021 [33] Retrospective Proprietary,

Single Center 64 - - - - - -

Use of the RAPID mobile app
(which includes Rapid ASPECTS
functionality) decreased door to
groin puncture times by 33 min

compared to patients treated
pre-app and improved scores on

National Institutes of Health
Stroke Scale 24 h after procedure

(12.1 vs. 8.0) and at discharge
(11.8 vs. 7.8)

Albers et al.,
2019 [34] Retrospective GAMES-RP trial,

Multicenter 65 - - - 73% - -

RAPID ASPECTS was more
accurate than clinicians (73% vs.

56%) in identifying early
ischemia on DWI.

Mansour et al.,
2020 [35] Retrospective Proprietary,

Single Center 122 - - - - - -

Automated ASPECT score by the
algorithm performed equally to

scoring by neuroradiologists
(κ = 0.8).
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Figure 2. Reported technology performance from the literature. Various performance metrics (x-axis;
using human performance as the gold standard) are reported for (A) LVO and ASPECT technologies,
(B) CTP technologies, and (C) ICH technologies. Bars represent the minimum and maximum reported
values for each metric. Data are depicted as a single point when only one value is reported in the
literature. Not every technology has data for all performance metrics. Variation in performance was
generally higher for LVO/ASPECT technologies compared to ICH technologies. More performance
quantification is needed for CTP technologies. ASPECT: Alberta Stroke Program Early CT Score; AUC:
Area Under the Receiver Operating Curve; CTP: Computed Tomography Perfusion; ICH: Intracranial
Hemorrhage; LVO: Large Vessel Occlusion; NPV: Negative Predictive Value; PPV: Positive Predictive
Value. Metrics for Rapid ASPECTS are related to calculating ASPECT scores, while other technologies
in (A) are evaluated on LVO detection.

RapidAI is a technology platform similar to Viz.ai. In addition to LVO identification
on CTA (RAPID-CTA, RAPID-LVO), RapidAI includes software to analyze CT perfusion
(RAPID-CTP) and MRI (RAPID-MRI) images for stroke triaging [36]. Though RAPID-LVO
has a reported NPV range of 97–99% [26] and sensitivity ranging from 80–94%, there is
a wide range of reported positive predictive values (PPV). Importantly, the PPV is 14%
when identifying LVOs in the M2 segment of the MCA [26]. This is in contrast to Viz
LVO’s reported lower bound PPV of 65%, which did not vary significantly across ICA,
M1-MCA, and M2-MCA [24]. Variations in and relatively low PPVs highlight the use
of these platforms as initial screening tools (given their high sensitivities and negative
predictive values) that require subsequent expert confirmation to determine the presence
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of LVO (Table 2, Figure 2A). Use of both RAPID and Viz LVO has improved clinical
workflows/outcomes (e.g., reducing CT to groin puncture times) with similar run times of
~3 min per scan [21,22,25].

Newer technologies for LVO identification include CINA-LVO [37] and HALO [38],
which have shown promising performance in the few studies that have assessed their
functionality. CINA has demonstrated relatively strong performance (PPV of 86–99%, NPV
of 64–99%) across LVO anatomy [27,28]. The limited data for HALO reports an NPV of 91%
and a PPV of 47%; however, performance varied based on the anatomical location of the
LVO, with the lowest performance in M2 LVOs [29].

5. CT Head (CTH) Analysis (ASPECTS Score) in Acute Ischemic Stroke

Assessing the extent of irreversible ischemic damage to guide treatment decisions
is equally important as identifying suspected LVOs. The Alberta Stroke Program Early
CT Score (ASPECTS) is one widely used method for accomplishing this task. While
diffusion-weighted MR imaging provides the most accurate information regarding acute
infarction, CTH is more readily available in the acute setting. FDA-approved Rapid
ASPECTS determines ASPECTS from CTs in patients with known MCA or ICA occlusions,
but not for primary interpretation of CT images. In addition, the technology is only
intended for use on GE Lightspeed VCT Scanners [39]. Overall, many have shown a strong
correlation between ASPECTS determined manually by experts (e.g., neuroradiologists),
which is currently the gold standard, and those calculated by Rapid ASPECTS [30,31,35]
(Table 2). Some even report superior performance by Rapid ASPECTS in analyzing imaging
obtained soon after symptom onset [32,34]. Rapid ASPECTS’ individual impact on clinical
efficiency and patient outcomes has not yet been studied. However, use of the broader
RapidAI mobile app, which includes Rapid ASPECTS functionality, decreased door-to-
groin puncture times and improved subsequent NIH stroke scale scores [33].

6. CT Perfusion (CTP) Analysis in Acute Ischemic Stroke

Another class of FDA-approved, AI/ML-enabled technologies for the management of
stroke includes technologies that analyze CTP or MR perfusion images to assess the core
and penumbra volumes and predict final infarct volumes. CTP can demonstrate ischemic
tissue, which consists of non-salvageable tissue and at-risk tissue that could be rescued
with successful reperfusion. CTP analysis provides specific parameters, including cerebral
blood volume (CBV), cerebral blood flow (CBF), and mean transit time (MTT). Rapid-CTP
is a comprehensively studied tool for CTP analysis within the broader RAPID platform and
performs well in estimating final infarct volumes, with high accuracy and relatively strong
correlations to the gold standard (e.g., human estimates of volumes) [40–45] (Table 3). Vit-
rea CT Brain Perfusion was approved by the FDA in November 2018 to quantify cerebral
blood flow and predict final infarct volumes [46]. Many groups have found Vitrea outper-
forms Rapid-CTP with respect to final infarct volume predictions [47–49], with the gold
standard determined by human interpretation of DWI/FLAIR imaging (Table 3; Figure 2B).
FastStroke/CT Perfusion 4D is a similar technology that not only predicts ischemic core
volume but also assesses the quantity and quality of collateral perfusion [50,51]. Similar to
Vitrea CT, FastStroke/CT Perfusion 4D performed comparably to Rapid-CTP (intraclass
correlation coefficient of 0.95) [52], and its additional capability to assess collateral circula-
tion improved accuracy in predicting good outcomes [53]. Icobrain CTP uses a CNN to
estimate penumbra volumes and cerebral blood flow, both of which have strong correla-
tions to expert assessments by radiologists [54,55] (Table 3). Viz CTP is a similar software
that performed well in predicting final infarct volume (r = ~0.6) [56]. While the above
software solutions are well-characterized, there are no studies demonstrating improved
time-to-reperfusion. Solutions such as Augmented Vascular Analysis [57] and Neuro.AI
Algorithm [58] are yet to be independently assessed in the literature (Table 3).
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Table 3. Seven technologies are indicated to analyze CTP images. The majority of studies were retrospective. Algorithms are able to predict final infarct volume
and/or assess the quality of collateral perfusion, and algorithm performance met or exceeded human performance in binary and multiclass classification. ICH
location (e.g., under the calvaria) and anatomical variations (e.g., calcification of the falx) reduced algorithm performance. Human performance generally continues
to be the gold standard for evaluating these algorithms. CBF: Cerebral Blood Flow; CBV: Cerebral Blood Volume; MTT: Mean Transit Time; SVD: Singular
Value Decomposition.

Device Author, Year Level of
Evidence

Dataset Char-
acteristics

Sample Size
(Scans) AUC PPV NPV Accuracy Sensitivity Specificity Other Metrics/Comments

Vitrea CT
Brain

Perfusion

Rava et al.,
2020 [47] Retrospective Proprietary,

Single Center 105 - - - - - -

In estimating infarct volume,
Spearman correlation coefficient
between Vitrea and DWI/FLAIR
ranged from 0.71 to 0.77. Vitrea

outperformed RAPID.

Rava et al.,
2020 [48] Retrospective Proprietary,

Single Center 107 - - - - - -

In estimating infarct volume,
Spearman correlation coefficient

between different algorithms
within Vitrea (i.e., Bayesian and

Singular Value Decomposition) and
FLAIR MRI was 0.98 vs. 0.76-0.87
between RAPID and FLAIR MRI.

Rava et al.,
2021 [49] Retrospective Proprietary,

Single Center 63 - 63–72% - - - - -

Rava et al.,
2021 [59] Retrospective Proprietary,

Single Center 108 - - - 96–98% 60–62% 98–99%

Vitrea overestimated infarct
volume, but provided the most

accurate penumbra assessment for
patients treated conservatively.

Ichikawa et al.,
2021 [60]

Retrospective Proprietary,
Single Center 36 - - - - - -

Vitrea’s Bayesian algorithm had
better delineation of abnormal

perfusion areas and estimation of
infarct volume compared to the

SVD implementation.
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Table 3. Cont.

Device Author, Year Level of
Evidence

Dataset Char-
acteristics

Sample Size
(Scans) AUC PPV NPV Accuracy Sensitivity Specificity Other Metrics/Comments

RAPID (CTP)

Hokkinen
et al., 2021 [40] Retrospective Proprietary,

Single Center 89 - - - - - -

In patients presenting 6 to 24 hours
from onset of symptoms,

CTP-RAPID’s estimate of infarct
volume correlated with follow-up

imaging (r = 0.82). Correlation
decreased (r = 0.58) in patients

presenting 0 to 6 hours after
symptom onset.

Wouters et al.,
2021 [42]

Randomized
Controlled

Trial

MR CLEAN
trial & CRISP

study,
Multicenter

127 - - - - - -
A new deep learning CNN model

outperformed RAPID in predicting
final infarct volume.

Potreck et al.,
2021 [43] Retrospective Simulation 53 - - - - - -

Head motion during CT perfusion
acquisition can impact infarct core

estimates.

Bouslama
et al., 2021 [44] Retrospective Proprietary,

Single Center 479 - - - - - -
RAPID had moderate correlation

with final infarct volumes
(r = 0.42–0.44).

Siegler et al.,
2020 [61] Retrospective

Multi-site
registry,

Multicenter
410 0.69 - - - 62% 72%

Stroke mimics can show
abnormalities on RAPID

CT analysis.

Kim et al., 2019
[45] Prospective Proprietary,

Single Center 296 - - - 89–100% - -

Interclass correlation between
RAPID and manual measurements
of infarct volume were 0.98, with
RAPID underestimating volumes

by ~2 mL on average.
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Table 3. Cont.

Device Author, Year Level of
Evidence

Dataset Char-
acteristics

Sample Size
(Scans) AUC PPV NPV Accuracy Sensitivity Specificity Other Metrics/Comments

FastStroke/CT
Perfusion 4D

Verdolotti
et al., 2020 [51] Retrospective Proprietary,

Single Center 86 - - - - - -

Algorithm is comparable in efficacy
to the status quo in evaluating
collateral circulation, but has
simpler workflows and faster
turnaround times, making use

easier for radiologists.

Ospel et al.,
2021 [53] Prospective

PRove-IT
cohort study,
Multicenter

285 0.63–0.76 - - - - -

Time-variant multiphase CTA
(mCTA) maps produced by the

software improved prediction of
good outcomes and performed

comparably to conventional mCTA
in predicting infarct volume.

Liu et al., 2021
[52] Retrospective Proprietary,

Single Center 82 - - - - - -

CT Perfusion 4D had ICC of 0.95
compared to RAPID in predicting
core volumes. The algorithm also

performed well for
volumes ≤ 70 mL

Icobrain-
CTP

de la Rosa
et al., 2021 [54] Retrospective

Public ISLES18
stroke

database
156 - - - - - -

Icobrain uses a CNN that does not
need user input in the form of

thresholding to assess perfusion.
Estimations of penumbra volume

using CBF, CBV, and MTT had
strong correlation with assessments

by radiologists.

de la Rosa
et al., 2021 [55] Retrospective

Public ISLES18
stroke

database
156 0.86 - - - - -

Icobrain performed comparably to
expert estimates of cerebral blood

flow based on 4D CTP scans.
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Table 3. Cont.

Device Author, Year Level of
Evidence

Dataset Char-
acteristics

Sample Size
(Scans) AUC PPV NPV Accuracy Sensitivity Specificity Other Metrics/Comments

Viz CTP Pisani et al.,
2021 [56] Prospective

Proprietary
database
otherwise

unspecified

242 - - - - - -
Viz CTP performed well in

predicting final infarct volume
(r = 0.601).

Augmented
Vascular
Analysis

Neuro.Al
Algorithm
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7. Intracranial Hemorrhage (ICH) Identification

Technologies indicated for the detection of ICH generally performed better than those
indicated for LVO detection (Table 4). BriefCase was the first FDA-approved, AI/ML-
enabled technology for the identification of ICH from non-contrast head CT [62]. Brief-
Case’s CNN-based algorithm [63] has shown strong performance by reducing outpatient
scan interpretation delays by 90% (604 min reduction) and inpatient delays by 10% (38
min reduction) [64]. Cases flagged by BriefCase as suspicious for ICH had an average
turnaround time of 73 min, versus 132 min for non-flagged cases [65]. Recent studies assess-
ing BriefCase have reported NPVs of 96–99% and PPVs of 72–96% [64,66,67] (Figure 2C).
A main driver of false negatives was ICH anatomy (e.g., under the calvaria), while false
positives were driven by tumors and calcifications [68,69].

CINA-ICH has similar reported performance in ICH detection compared to BriefCase
(Figure 2C). NPVs ranged from 92–99%, PPVs from 80–97%, and the algorithm had a
sensitivity of 72% when identifying relatively small-volume bleeds (volume less than
5 mL) [27,70]. CINA has additional subclassification functionality (e.g., differentiating
between subarachnoid and intraventricular hemorrhage) with a sensitivity of at least
90% [27]. CuraRad-ICH, on the other hand, had subclassification sensitivities between
61 and 99% [71,72], though the software was studied on a larger sample of scans and has
specificities roughly comparable to those of CINA.

Rapid-ICH [73], with PPV, NPV, accuracy, sensitivity, and specificity of at least 95% [74],
and HealthICH [75], with an AUC of 0.96 [76], are two other technologies indicated for
ICH detection. Some FDA-approved technologies for ICH detection have yet to be studied
independently in the literature. These include Accipiolx [77], DeepCT [78], NinesAI [79],
qER [80], and Viz ICH [81].
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Table 4. Ten technologies indicated to diagnose ICH. The majority of studies were retrospective, and algorithm performance met or exceeded human performance in
binary and multiclass classification. ICH location (e.g., under the calvaria) and anatomical variations (e.g., calcification of the falx) reduced algorithm performance.
Human performance generally continues to be the gold standard for evaluating these algorithms. CPH: Cerebral Parenchymal Hemorrhage; EDH: Extradural
hemorrhage; ICA: Internal Carotid Artery; IVH: Intraventricular Hemorrhage; MCA: Middle Cerebral Artery; SAH: Subarachnoid Hemorrhage. * Indicates metric
was extrapolated from available data.

Device Author, Year Level of
Evidence

Dataset Char-
acteristics

Sample Size
(Scans) AUC PPV NPV Accuracy Sensitivity Specificity Other Metrics/Comments

BriefCase

Ojeda et al.,
2019 [63] Retrospective Proprietary,

Multicenter 7112 - 96% 98% 98% 95% 99%
BriefCase uses a CNN to analyze

non-contrast CTs to detect and
triage ICH.

Wismüller
et al., 2020 [65]

Randomized
Clinical Trial

Proprietary,
Single Center 620 - - - 96% 95% 97%

Turn-around times for cases
flagged by BriefCase (73 min)
were significantly lower than

those for non-flagged
cases (132 min).

Ginat et al.,
2020 [66] Prospective Proprietary,

Single Center 2011 - 74% 98% 93% 89% 94%

Accuracy was significantly
higher for emergency (96.5%) vs.

inpatient (89.4%) cases. False
positives had various causes,

including: (1) artifacts, (2) thick
dura, (3) intra-arterial clot,

(4) calcifications, and (5) tumors.

Rao et al.,
2021 [69] Retrospective Proprietary,

Single Center 5585 - - - - - -

When applied to scans that
radiologists reported as negative
for ICH, BriefCase found 28 scans
with ICH, of which 16 truly did.
Subset analysis showed a false

positive rate of 32%.

Ginat et al.,
2021 [64] Retrospective Proprietary,

Single Center 8723 - 86% 96% - 88% 96%

Scan view delay for cases flagged
by the software decreased by

37 min for inpatients and 604 min
for outpatients. In the ER, time
reduction was most prominent
during the 9 p.m. to 3 a.m. and
10 a.m. to 12 p.m. periods, and
especially during the weekend.
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Table 4. Cont.

Device Author, Year Level of
Evidence

Dataset Char-
acteristics

Sample Size
(Scans) AUC PPV NPV Accuracy Sensitivity Specificity Other Metrics/Comments

Voter et al.,
2021 [67] Retrospective Proprietary,

Single Center 3605 - 81% 99% 96% * 92% 98%

Neuroradiologists and the
software agreed 97% of the time.

Prior neurosurgery decreased
model performance.

Kundisch et al.,
2021 [68] Retrospective Proprietary,

Multicenter 4946 - 72% * 99% * 97% * 88% * 98% *

Software detected 29 additional
ICHs (0.59%) in the cohort. False

negative rate was 12.4%
compared to the radiologist rate
of 10.9%. Anatomical variations
(e.g., calcifications) were difficult

for the algorithm to analyze.

CINA

McLouth et al.,
2021 [27] Retrospective Proprietary,

Multicenter 814 - 80–97% 92–99% 96% 91% 97%

True positive rates (sensitivity)
for ICH subclassification were

>90%. ICH < 5 mL had a
sensitivity of 72%.

Rava et al.,
2021 [70] Retrospective Proprietary,

Single Center 302 - 85% 98% 94% 93% 93%

95% of ICH volumes were
correctly triaged. 88% of non-ICH
cases were correctly classified as

ICH negative.

CuraRad-
ICH

Ye et al.,
2019 [71] Retrospective Proprietary,

Multicenter 2836 0.8–1.0 - - 75–99% 61–99% 82–99%

Algorithm was evaluated for
binary classification (ICH vs. no

ICH) and multi-type
classification (CPH, SAH, EDH,

SDH, IVH).

Guo et al., 2020
[72] Retrospective Proprietary,

Multicenter 1176 0.85–0.99 - - 90–98% 78–97% 92–100%

Algorithm was evaluated for
binary classification (ICH vs. no

ICH) and multi-type
classification (CPH, SAH, EDH,

SDH, IVH).
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Table 4. Cont.

Device Author, Year Level of
Evidence

Dataset Char-
acteristics

Sample Size
(Scans) AUC PPV NPV Accuracy Sensitivity Specificity Other Metrics/Comments

Rapid ICH Heit et al.,
2021 [74] Retrospective Proprietary,

Multicenter 308 - 96% 95% 95% * 96% 95%

HealthICH Bar et al.,
2018 [76] Retrospective Proprietary,

Multicenter 1426 0.96 - - - - -

Accipiolx

DeepCT

NinesAI

QER

Viz ICH
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8. Rehabilitation

Tools for post-stroke rehabilitation require further development, especially given the
poor natural recovery that is often seen with stroke [62]. There is a need for technologies
that can extend the therapeutic window for patients and/or enable neurological recovery.
Here, we describe two FDA-approved technologies that can enhance post-stroke recovery.

An Israeli-based company, BrainQ, is developing a non-invasive brain-computer inter-
face (BCI) device that leverages extremely low frequency and low intensity electromagnetic
fields (ELF-EMF) to promote post-stroke recovery [82,83]. After a stroke, patients often
have abnormal neural oscillatory patterns, and exposure to tuned EMFs can influence these
oscillations [84], thereby promoting periods of neuroplasticity [85,86]. BrainQ’s technol-
ogy uses ML to extract motor-related spectral features from electrophysiology measure-
ments (EEG, MEG/EMG) [87] and then translates these into a specific ELF-EMF treatment
for patients [88].

BrainQ received FDA breakthrough status in February 2021 based on results from a
pilot trial of 25 patients with a history of sub-acute ischemic stroke. Patients who received
40 min of ELF-EMF treatment 5 days a week for 8 weeks had superior recovery compared
to the sham group as assessed by multiple metrics (e.g., NIH stroke score) and did not
report any adverse events [89]. BrainQ has planned a double-blind national clinical trial
across up to 20 inpatient rehabilitation facilities in the United States [90]. A previous BrainQ
clinical trial was terminated due to the COVID-19 pandemic [91].

IpsiHand Upper Extremity Rehabilitation System (IpsiHand), granted breakthrough
status by the FDA in April 2021, is the first FDA-approved device to use BCI technology
to facilitate motor rehabilitation in patients who are more than 6 months post-stroke. The
device uses an EEG electrode headset to translate neural activity of movement intent from
the uninjured brain hemisphere into physical movements of a robotic exoskeleton worn
around the impaired hand, wrist, and forearm [92]. A study of ten chronic hemiparetic
stroke survivors with upper-limb impairment showed significant improvement in arm
functionality after 12 weeks of IpsiHand therapy, with only minor side effects (e.g., skin
redness) [93]. A randomized clinical trial is needed to assess whether use of IpsiHand alone
proves more beneficial for upper extremity function versus traditional physical therapy.
IpsiHand has the potential to enhance functional recovery with convenient, in-home post-
stroke rehabilitation.

9. Discussion

In total, the FDA has approved 22 unique AI/ML-enabled technologies to assist clini-
cians with the diagnosis or management of stroke or ICH. The 20 technologies indicated
for assistance with diagnosis can save valuable time by triaging potentially troubling scans
and reducing the need for labor-intensive and time-consuming tasks such as segmenta-
tion. These technologies can ultimately reduce delays for patients to receive life-saving
interventions. Adoption of these technologies has been strong, with RAPID in use at 1800
and Viz.ai in 900 hospitals [94,95]. In addition, some of the technologies described here can
co-function within a broader technology suite to facilitate care coordination. For example,
technologies developed by the same company (e.g., Viz.ai, RapidAI) are hosted within
an interconnected system that includes mobile alerts, capabilities for remote CT/MRI
viewing, and HIPAA-compliant provider-to-provider communication. This simplification
of care coordination works synergistically with AI/ML capabilities to achieve the results
these technologies have produced. In the future, more of these technologies will need to
be housed within similar, integrated clinical systems. Such technology-based care coor-
dination and workflow simplification solutions have improved outcomes in non-stroke
medical emergency settings [96]. The two devices indicated for post-stroke rehabilitation
are leveraging AI/ML to create new forms of therapies that are opening the possibility for
patients to achieve significant recovery following serious neurological injury. With time,
the safety and capabilities of these devices will only improve, further enabling clinicians to
facilitate favorable patient outcomes. In the future, there will be a need for head-to-head
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comparisons of technologies using the same clinical datasets to further help clinicians and
health systems more definitively decide which to use.

Given the proprietary nature of the technologies discussed here, specific details about
ML model design and algorithms are not publicly available. However, most models
that underlie technologies indicated for stroke diagnosis leverage deep learning in the
form of convolutional neural networks. The reasons for performance variation across
these technologies are multifactorial and likely due to a combination of model design and
quality/quantity of testing data. Model design in ML development involves determining
model structure (e.g., number of layers in a neural network) and hyperparameters (e.g.,
learning rate for optimization algorithms) and still relies on trial and error [97–100]. When
testing different model designs, developers must also keep end-user performance and
experience in mind, as these technologies must work across multiple imaging platforms
and user devices. Differences in the quality and quantity of training data also likely
contribute to differences in performance among the technologies discussed here. Currently,
the “gold-standard” used to train and measure the success metrics of the models underlying
these technologies is produced by radiologists and other clinicians. Therefore, any inherent
human error in this data will be carried forward and learned by the algorithm. This is
primarily an issue for algorithms that require segmentation for tasks such as CT perfusion
analysis and ICH detection. Classification algorithms (e.g., triaging CT scans for stroke)
are less impacted by this human error, but their performance is influenced by the specific
training methods (e.g., cross-validation, dropout regularization) that were employed during
algorithm development. Finally, the size and variety of training data play a large role in
algorithm performance. Training a model with a large number of unique data points is
important to minimize overfitting and thereby maximize performance. The majority of the
publications analyzed here used proprietary, single-center datasets to evaluate technologies
(Tables 2–4) and there is a need for larger, multi-center, international research in order to
more comprehensively test these technologies across a variety of clinical scenarios and
patient populations.

There is great promise for AI/ML-enabled technologies in stroke diagnosis and man-
agement. The automated process can minimize intra-/inter-rater variability and provide
support for less experienced or non-specialized physicians. As such, integration of these
software solutions into patient care can improve the speed and accuracy of diagnosis.
However, there are still issues to be addressed. The first is improving algorithm perfor-
mance. Though many studies have shown that these AI/ML algorithms can perform
comparably to or even outperform neuroradiologists, the technologies can fall short in
certain instances. The anatomical location of the disease or patient-to-patient anatomical
variation is a common cause of impaired algorithm performance. Difficulties with LVO
identification were seen with anatomical variations such as early unilateral MCA or petrous
ICA [26]. Additionally, LVO identification is less reliable for the posterior circulation, and
algorithms encounter difficulty determining distal versus proximal occlusions. Similarly,
AI-enabled software has had difficulty identifying ICH immediately under the calvaria [68],
likely driven by a combination of beam-hardening and partial volume artifacts in CT imag-
ing [101]. Anatomical variation, such as calcification of the falx cerebri, can also make ICH
identification difficult [69]. Continued training of algorithms in patients with anatomical
variations or additional intracranial abnormalities will be needed to improve performance.
Fortunately, training functionalities can be developed that enable clinicians to inform the
algorithm when errors are made. As discussed above, there is still a lack of robust, head-to-
head comparisons between these various technologies, making it difficult to clearly identify
one as “superior” to others. The technologies discussed here can safely be used in clinical
practice to augment the expertise of radiologists, neurologists, and neurosurgeons, keeping
in mind the performance data and shortcomings presented here.

The second issue to address with the use of these technologies involves the use of
black-box AI/ML algorithms. Neural networks, and “deep” neural networks in particular,
can tend to be “black box” algorithms in that they arrive at conclusions and outputs without
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readily providing information regarding their analytical process. As neural networks tend
to underlie many AI/ML-enabled tools in healthcare today, some have argued that these
black-box algorithms must have increased transparency before being used in high-stakes
healthcare settings. There have been efforts to make AI/ML algorithms more interpretable
to the end user [102,103], with current “explainability methods” satisfying desires for
transparency to various extents [104]. Two common methods include saliency maps, which
visually highlight key features that an algorithm used to make a decision, and feature
relevance, which is a list of key quantitative or qualitative features that an algorithm used
in decision-making [105]. The field should also focus on rigorous internal and external
validation of algorithms and compliance with a common set of machine learning best
practices that support a level of standardization within the field. The FDA’s plan to develop
new protocols for assessing AI/ML-enabled technologies also addresses these concerns [6].
The role of intellectual property is a balancing concern that must be acknowledged. Though
it would be beneficial for end users to understand how exactly a decision was made
to, for example, not triage a scan for possible LVO, technology developers may worry
that publicly releasing too much information could potentially compromise security of
intellectual property. Still, there must be a common ground on which adequate information
is given to users or regulators about how, for example, a piece of software makes decisions
when analyzing radiology images.

The last issue that must be addressed involves reimbursement for hospitals that uti-
lize these technologies. In 2018, the Centers for Medicare and Medicaid Services (CMS)
approved payment for use of Viz LVO through a “New Technology Add-on Payment”,
marking the first time CMS reimbursed AI/ML-enabled software through this mecha-
nism [106]. RapidAI also received this designation from CMS [107], marking important
administrative milestones to increase the use of these technologies in direct patient care.
There is little public data available regarding the pricing of these technologies, and specific
pricing structures likely vary between contracts across different hospitals. In the future,
health systems must be aware of the reimbursement they receive when using these novel
technologies when negotiating licensing contracts. Additional potential costs to a health
system that must also be considered include increased expenditure on computing power
and physical or cloud storage.

Overall, the studies analyzed here show that AI/ML-enabled technologies for stroke di-
agnosis are performing equally to or even exceeding human performance on certain metrics.
Generally, these technologies have higher sensitivities and NPVs compared to specificities
and PPVs, further highlighting their role in triaging and assisting clinicians rather than
making definitive clinical decisions. In the coming years, as these technologies are exposed
to more cases and increased clinical data, their performance should only improve, but as
stated above, there is still a need for larger, multi-center trials to continue monitoring and
comparing technology performance. There is a common theme in the studies assessed
here: the use of these technologies can improve clinical workflows. However, few studies
further correlated increased efficiency with quantifiable improvements in patient outcomes.
Some studies report improvements in, for example, the NIH stroke scale, but there is still
perhaps a need for long-term follow-up to assess if the workflow efficiency facilitated by
these technologies truly translates to better long-term clinical outcomes. Similarly, there
are inconsistencies across studies regarding the timing of imaging analysis, as only a few
assessed the differential impact of using AI/ML-enabled technologies in the acute (e.g.,
0–6 h) versus the sub-acute (e.g., 6–24 h) timeframes. This is particularly important when
analyzing zones of ischemia and the viability of tissue post-stroke. In the same vein, there
must be more consistency in reporting the time technologies take to evaluate imaging. As
the complexity of medical imaging increases, the algorithms underlying these technologies
must be refined to efficiently process scans at a speed that is at least equivalent to, if not
faster than, human performance.

To facilitate the approval and clinical utilization of emerging AI/ML-enabled tech-
nologies, the FDA has created protocols to better assist researchers in developing these
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technologies and navigating the FDA approval process [6]. These protocols outlined good
machine learning practices for researchers to follow, created guidelines for algorithm trans-
parency, and established more robust guidelines for real-world data collection. As the field
of AI/ML rapidly advances, these protocols must also undergo rapid revision to remain
relevant. This includes new guidelines related to data security, bias in data sources, and
post-approval monitoring. In the future, when more technologies are developed not only
for stroke diagnosis but also for stroke prediction in high-risk populations and chronic
stroke management, robust guidelines will be essential as these technologies are used in
larger patient populations.

Our study has a few limitations. First, though the majority of papers analyzed here
were identified in PubMed, some papers were only discovered after searching company
websites. This may have introduced selection bias to our literature search, though the
minority of papers were found by searching company websites. Second, our study focuses
on FDA-approved solutions, but there are many emerging technologies in the research
pipeline that are not discussed here. Third, given the proprietary nature of the technologies
described here, we are unable to specifically comment on the strengths and weaknesses of
the design of the algorithms that underlie these technologies.

10. Conclusions

FDA-approved AI/ML-enabled technologies for stroke diagnosis and management
have proven to be powerful tools in improving the efficiency and accuracy of patient
care decisions by physicians. Many of these technologies use convolutional neural net-
works as their underlying algorithm and have approached or even exceeded the gold
standard of human performance when tested using real-world data. Future work is needed
to further refine the performance of these technologies in, for example, patients with
aberrant anatomy and to compare technologies in a head-to-head manner with large,
multi-center studies.
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